Biogeophysical feedbacks trigger shifts in the modelled vegetation-atmosphere system at multiple scales

نویسندگان

  • S. C. Dekker
  • H. J. de Boer
چکیده

Terrestrial vegetation influences climate by modifying the radiative-, momentum-, and hydrologicbalance. This paper contributes to the ongoing debate on the question whether positive biogeophysical feedbacks between vegetation and climate may lead to multiple equilibria in vegetation and climate and consequent abrupt regime shifts. Several modelling studies argue that vegetation-climate feedbacks at local to regional scales could be strong enough to establish multiple states in the climate system. An Earth Model of Intermediate Complexity, PlaSim, is used to investigate the resilience of the climate system to vegetation disturbance at regional to global scales. We hypothesize that by starting with two extreme initialisations of biomass, positive vegetation-climate feedbacks will keep the vegetation-atmosphere system within different attraction domains. Indeed, model integrations starting from different initial biomass distributions diverged to clearly distinct climate-vegetation states in terms of abiotic (precipitation and temperature) and biotic (biomass) variables. Moreover, we found that between these states there are several other steady states which depend on the scale of perturbation. From here global susceptibility maps were made showing regions of low and high resilience. The model results suggest that mainly the boreal and monsoon regions have low resiliences, i.e. instable biomass equilibria, with positive vegetation-climate feedbacks in which the biomass induced by a perturbation is further enforced. The perturbation did not only influence single vegetation-climate cell interactions but also caused changes in spatial patterns of atmospheric circulation due to neighbouring cells constituting in spatial vegetation-climate feedbacks. Large perturbations could Correspondence to: S. C. Dekker ([email protected]) trigger an abrupt shift of the system towards another steady state. Although the model setup used in our simulation is rather simple, our results stress that the coupling of feedbacks at multiple scales in vegetation-climate models is essential and urgent to understand the system dynamics for improved projections of ecosystem responses to anthropogenic changes in climate forcing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biogeophysical feedbacks trigger shifts in the modelled climate system

Biogeophysical feedbacks trigger shifts in the modelled climate system at multiple scales S. C. Dekker, H. J. de Boer, V. Brovkin, K. Fraedrich, M. J. Wassen, and M. Rietkerk Department of Environmental Sciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, The Netherlands Max Planck Institute for Meteorology, Hamburg, Germany Meteorologisches Institut, KlimaCampus, Hamburg, Germany Rec...

متن کامل

Shifts in Arctic vegetation and associated feedbacks under climate change

Climate warming has led to changes in the composition, density and distribution of Arctic vegetation in recent decades1–4. These changes cause multiple opposing feedbacks between the biosphere and atmosphere5–9, the relative magnitudes of which will have globally significant consequences but are unknown at a pan-Arctic scale10. The precise nature of Arctic vegetation change under future warming...

متن کامل

Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI) derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) were ...

متن کامل

Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum

The importance of the biogeophysical atmosphere-vegetation feedback in comparison with the radiative effect of lower atmospheric CO2 concentrations and the presence of ice sheets at the last glacial maximum (LGM) is investigated with the climate system model CLIMBER-2. Equilibrium experiments reveal that most of the global cooling at the LGM (−5.1C) relative to (natural) present-day conditions ...

متن کامل

Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification?

Multiple steady states in the atmospherebiosphere system can arise as a consequence of interactions and positive feedbacks. While atmospheric conditions affect vegetation productivity in terms of available light, water, and heat, different levels of vegetation productivity can result in differing energyand water partitioning at the land surface, thereby leading to different atmospheric conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009